Lecture 14: Shearer's Lemma: Examples

- Let $\mathcal{F} \subseteq 2^{[n]}$
- For every $i \in[n]$, we have $|\{F: i \in F \in \mathcal{F}\}| \geqslant t$
- Shearer's Lemma:

$$
H\left(X_{1}, \ldots, X_{n}\right) \leqslant \frac{1}{t} \sum_{F \in \mathcal{F}} H\left(X_{F}\right)
$$

Combinatorial Shearer's Lemma

- Let $\mathcal{A} \subseteq 2^{[n]}$
- Let $\operatorname{trace}_{F}(\mathcal{A})=\{F \cap A: A \in \mathcal{A}\}$
- Combinatorial Shearer's Lemma:

$$
|\mathcal{A}| \leqslant\left(\prod_{F \in \mathcal{F}}\left|\operatorname{trace}_{F}(\mathcal{A})\right|\right)^{1 / t}
$$

- Let S be a set of n points
- Let S_{i} be the set of n_{i} points where the i-th coordinate of elements in S is dropped, for $i \in[d]$

Theorem

$$
n \leqslant\left(n_{1} \cdots n_{d}\right)^{1 /(d-1)}
$$

- Let $\left(X_{1}, \ldots, X_{d}\right)$ be random variable for the coordinates of a uniformly random point in S
- Let $F_{-i}=[n] \backslash\{i\}$
- note that $\left|\operatorname{range}\left(X_{F_{-i}}\right)\right|=n_{i}$
- Let $\mathcal{F}=\left\{F_{-1}, \ldots, F_{-d}\right\}$
- Note that each element $i \in[n]$ is contained in at least $(d-1)$ sets in \mathcal{F}
- By Shearer's Lemma:

$$
\log n=H(X) \leqslant \frac{1}{d-1} \sum_{F_{-i} \in \mathcal{F}} H\left(X_{F_{-i}}\right) \leqslant \frac{1}{d-1} \sum_{F_{-i} \in \mathcal{F}} \log n_{i}
$$

Intersecting Family of Graphs

Theorem

Let \mathcal{G} be a family of graphs over n vertices such that for all $G_{i}, G_{j} \in \mathcal{G}$, there exists a triangle in $G_{i} \cap G_{j}$. Then $|\mathcal{G}| \leqslant 2^{m}-2$, where $m=\binom{n}{2}$.

- It is clear that there exists \mathcal{G} such that $|\mathcal{G}|=2^{m-3}$ (because, one can fix a triangle and every other edge we get an option to pick it or not)
- It is clear that $|\mathcal{G}| \leqslant 2^{m-1}$, because no set and its complement can be included
- Make the bound to $|\mathcal{G}| \leqslant 2^{m-2}$

Intersecting Family of Graphs (continued)

- Let (A, B) be a partition of n vertices such that $|A|=\lfloor n / 2\rfloor$ and $|B|=\lceil n / 2\rceil$
- Let $U(A, B)$ be the graph that is complete over all vertices in A and complete over all vertices in B
- Note that $G_{i} \cap G_{j}$ contains a triangle. So, $\left(G_{i} \cap G_{j}\right) \cap U(A, B) \neq \emptyset$ (because, if this is empty then ($G_{i} \cap G_{j}$) is a bipartite graph)
- Therefore $\left(G_{i} \cap U(A, B)\right) \cap\left(G_{j} \cap U(A, B)\right)$ is non-empty
- So, any two graphs in trace ${ }_{U(A, B)}(\mathcal{G})$ intersects
- Therefore, $\operatorname{trace}_{U(A, B)}(\mathcal{G}) \leqslant 2^{m^{\prime}-1}$, where m^{\prime} is the number of edges in $U(A, B)$, i.e., $m^{\prime}=\binom{\lceil n / 2\rceil}{ 2}+\binom{\lfloor n / 2\rfloor}{ 2}$
- Let \mathcal{F} be the set of all $U(A, B)$ for all partitions (A, B)
- Note that $m^{\prime}|\mathcal{F}|=m t$, where any edge over the n vertices occurs t times
- Combinatorial Shearer's Lemma:

$$
|\mathcal{G}|=\left(\prod_{\mathcal{F} \in \mathcal{F}}\left|\operatorname{trace}_{F}(\mathcal{G})\right|\right)^{1 / t} \leqslant\left(2^{m^{\prime}-1}\right)^{|\mathcal{F}| / t} \leqslant 2^{m-2}
$$

Counting Independent Sets in Bi-Partite Graphs

- Let $G=(A, B, E)$ be a d-regular bipartite graph with partite sets A and B, and edge set E
- Let $|A|=|B|=m$

Theorem

The number of independent sets N is at most $\left.\frac{(}{2}^{d+1}-1\right)^{m / d}$

- Let X be uniformly random independent set in G
- $\log N=H(X)=H\left(X_{A} \mid X_{B}\right)+H\left(X_{B}\right) \leqslant$

$$
\left(\sum_{v \in A} H\left(X_{v} \mid X_{B}\right)\right)+H\left(X_{B}\right)
$$

- By Shearer's Lemma: $H\left(X_{B}\right) \leqslant \frac{1}{d} \sum_{v \in A} H\left(X_{N(v)}\right)$
- $\log N \leqslant \sum_{v \in A} H\left(X_{v} \mid X_{B}\right)+\frac{1}{d} H\left(X_{N(v)}\right) \leqslant$

$$
\sum_{v \in A} H\left(X_{v} \mid X_{N(v)}\right)+\frac{1}{d} H\left(X_{N(v)}\right)
$$

Counting Independent Sets (continued)

- Let $\chi_{v}=0$ if $X_{N(v)}=\mathbf{0}, \chi_{v}=1$, otherwise
- Let $p=\operatorname{Pr}\left[\chi_{v}=0\right]$
- First, $H\left(X_{v} \mid X_{N(v)}\right) \leqslant H\left(X_{v} \mid \chi_{v}\right) \leqslant 1 \cdot p+0 \cdot(1-p)=p$
- Second, $H\left(X_{N(v)}\right)=H\left(X_{N(v)}, \chi_{v}\right)=H\left(\chi_{v}\right)+H\left(X_{N(v)} \mid \chi_{v}\right) \leqslant$ $h(p)+(1-p) \log \left(2^{d}-1\right)$
- So, we have $\log N \leqslant \sum_{v \in A} p+\frac{1}{d}\left(h(p)+(1-p) \log \left(2^{d}-1\right)\right)$
- The right had side is maximized for $p=2^{d} /\left(2^{d+1}-1\right)$ and, hence, we get: $\log N \leqslant \frac{m}{d} \log \left(2^{d+1}-1\right)$

Counting Embedding of Graphs

- Let H be a small graph and G be a graph with ℓ edges
- Let embed (H, ℓ) represent the number of embeddings of H in a graph with ℓ edges

Theorem

There exists $c_{1}, c_{2}, \rho^{*}(H)$ such that:

$$
c_{1} \ell^{\rho^{*}(H)} \leqslant \operatorname{embed}(H, \ell) \leqslant c_{2} \ell^{\rho^{*}(H)}
$$

Example

- Let H be a triangle
- Let G be any graph with ℓ edges
- The number of embeddings of H in G such that one of the vertices of H falls at v is at most $d(v)^{2}$ (because the remaining two vertices of H can be mapped to two neighbors of v)
- The number of embeddings of H in G such that one of the vertices of H falls at v is at most 2ℓ (because the edge in H opposite to v can map to one of the ℓ different edges or their reverses)
- So, the number of embeddings is upper bounded by $\sum_{v \in V(G)} \min \left\{d_{v}^{2}, 2 \ell\right\} \leqslant \sum_{v \in V(G)} \sqrt{d_{v}^{2} \ell}=(2 \ell)^{3 / 2}$
- Let G be a $K_{n \times n \times n}$ graph such that $3 n^{2}=\ell$, then there are $n^{3}=(\ell / 3)^{3 / 2}$ different mappings of H in G

Fractional Covering

- Covering:
- Let $\varphi: E(H) \rightarrow\{0,1\}$
- For every vertex $v \in V(H)$, we have: $\sum_{e \in E(H): v \in e} \varphi(e) \geqslant 1$
- Overall, we define: $\rho(H)=\min _{\varphi} \sum_{e \in E(H)} \varphi(e)$
- Fractional Covering:
- Let $\varphi: E(H) \rightarrow[0,1]$
- For every vertex $v \in V(H)$, we have: $\sum_{e \in E(H): v \in e} \varphi(e) \geqslant 1$
- Overall, we define: $\rho^{*}(H)=\min _{\varphi} \sum_{e \in E(H)} \varphi(e)$

Fractional Independent Set

- Independent Set:
- Let $\psi: V(H) \rightarrow\{0,1\}$
- For every edge $e \in E(H)$, we have: $\sum_{v \in V(H): v \in e} \psi(v) \leqslant 1$
- Overall, we define $\alpha(H)=\max _{\psi} \sum_{v \in V(H)} \psi(v)$
- Fractional Independent Set:
- Let $\psi: V(H) \rightarrow[0,1]$
- For every edge $e \in E(H)$, we have: $\sum_{v \in V(H): v \in e} \psi(v) \leqslant 1$
- Overall, we define $\alpha^{*}(H)=\max _{\psi} \sum_{v \in V(H)} \psi(v)$

LP Duality

Theorem

$$
\rho^{*}(H)=\alpha^{*}(H) \in \mathbb{Q}
$$

- $\rho(H) \geqslant \rho^{*}(H)=\alpha^{*}(H) \geqslant \alpha(H)$
- Consider the mapping ψ^{*} that achieves $\alpha^{*}(H)$
- We construct a graph G as follows:
- For $v \in V(H)$, we construct partite set V_{v} of $(\ell /|E(H)|)^{\psi^{*}(v)}$
- For every $(u, v) \in E(H)$ we connect every vertex in V_{u} to every vertex in V_{v}
- Total number of edges is:

$$
\sum_{(u, v) \in E(H)}\left(\frac{\ell}{|E(H)|}\right)^{\psi^{*}(u)+\psi^{*}(v)} \leqslant \sum_{(u, v) \in E(H)} \frac{\ell}{|E(H)|}=\ell
$$

- $\operatorname{embed}(H, \ell) \geqslant \prod_{v \in V(H)}\left(\frac{\ell}{|E(H)|}\right)^{\psi^{*}(v)}=c_{1} \ell^{\alpha^{*}(H)}=c_{1} \ell^{\rho^{*}(H)}$

Upper Bound

- $X_{V(H)}$ is uniformly chosen embedding
- Consider the mapping φ^{*} that achieves $\rho^{*}(H)$
- Let $C \in \mathbb{N}$ such that $C \cdot \varphi^{*}(e) \in \mathbb{N}$ for all $e \in E(H)$
- For every $(u, v)=e \in E(H)$ we consider the event $X_{u, v}$ with $C \cdot \varphi^{*}(e)$ repetitions in \mathcal{F}
- Every vertex v occurs in at least $\sum_{e \in E(H): v \in e} C \varphi^{*}(v) \geqslant C$ times
- $\log |\operatorname{embed}(H, \ell)| \leqslant \frac{1}{C} \sum_{(u, v) \in E(H)} C \varphi^{*}(e) H\left(X_{\{u, v\}}\right) \leqslant$ $\sum_{(u, v) \in E(H)} \varphi^{*}(v) \log (2 \ell)=\rho^{*}(H) \log (2 \ell)$
- $|\operatorname{embed}(H, \ell)| \leqslant c_{2} \ell^{\rho^{*}(H)}$

